

Create an inverse function from a story context by changing the input and output variables.
Recognize inverse functions in graphical form.
Determine if a function is invertible.
Find the domain and range of a function and its inverse.
Write the equation of the inverse function from the equation of a function.
Recognize inverse functions in tables, graphs, and equations.
Understand that inverse functions "undo" each other.
Produce an invertible function from a noninvertible function by restricting the domain.

	Simplify logarithmic expressions
	Compare and Order logarithmic expressions
	Simplify natural logarithmic expressions
	Graph logarithmic functions and transformations
	Solve exponential and logarithmic equations - like bases
	Solve exponential and logarithmic equations - unlike bases
	Solving compound interest application problems
	Solving compound continuously problems
	Solve exponential growth and decay problems
	Solve problems using e and In.
	Solve systems of equations involving exponential and logarithmic
equations	
	Solve systems of equations involving linear equations

Identify a cubic function from the rate of change. Describe the features of $f(x)=x^{3}$.
Graph cubic functions in the form: $f(x)=a(x-h)^{3}+k$ Describe the similarities and differences between cubic functions and quadratic functions.
Add polynomials both algebraically and graphically. Subtract polynomials both algebraically and graphically. Multiply polynomials using the distributive property.
Use Pascal's Triangle to raise a binomial to a power.
Use the Fundamental Theorem of Algebra to determine how many roots a polynomial has.
Write a polynomial in factored form, given the roots of the polynomial.
Find the other roots of a polynomial given a factor or root. Describe pairs of irrational or imaginary roots of polynomials. Determine the end behavior of a polynomial of a given degree.

