Honors Math 3 Ms. J. Blackwell, nbct https://sites.google.com/site/blackwellsbutterflyworld/home			
Unit 3 - Polynomial Functions हैं			
Day	Date	Topic	Homework
1	$\begin{aligned} & 10 / 7 \\ & \text { Mon } \end{aligned}$	L1 Patterns (October $7^{\text {th }}$ - National Chocolate Covered Pretzel \& Frappe Day)	L1 Set \# 10-15 \& WS Recursive \& Explicit
2	$10 / 8$ Tues	 Pascal's Triangle (October 8in ${ }^{\text {- National Pierogi Day) }}$	L2 \# 1-7, L2 SG \# 15-20, WS Pascal, \& WS On-line Patterns
3	$\begin{gathered} 10 / 9 \\ \text { Wed } \end{gathered}$	(October 9" - Natio	Workday
3	10/10 Thurs (Due Dates are on the Website.)	L3 Pascal's Triangle \& Long Divisio n(October 10n - National Angel Food Cake \& Cake Decorating Day)	L3 \# 1-5abcd, (5) Polynomial Cube Problems = Google Classroom due Mon, On - line Pattern Video Clip, \& Graded HW \# 4 = Birthday \# 1
4	$\begin{gathered} 10 / 11 \\ \text { Fri } \end{gathered}$	Quiz	Thurs' HW
Assignments are due the day before or the morning of a pre-planned Absence / Field Trip. Anyone checking into school after math class will need to turn in assignments by the end of the school day. Thank You!			

हु			
6	10/14 Mon (Due Dates are on the Website.)	L3 - L4 Long Division \& Polynomial Roots (October 14" - National Dessert \& Columbus Day)	
7	10/15 Tues	L5 Factoring Polynomials (October 15m - National Cheese Curd Day)	Study, L5\#1-4, L5 RSG, Sheldon's Spot Data, \& Birthday - Part 1
8	$\begin{aligned} & \text { 10/16 } \\ & \text { Wed } \end{aligned}$	L6 End Behavior, Even, \& Odd Functions (October 16" - National Dictionary \& Boss Day)	L6 Part II \# 1, 2, 4, 12, 13, 14, L6 RSG Even, \& 21
9	10/17 Thurs	L7 Polynomial Review (October 17 $7^{\text {m }}$ - National Pasta Day)	On-line CW \# 1, 2, 3, 4 = Take Notes, \& Birthday - Part $2=$ GH \# 4
10	$\begin{gathered} 10 / 18 \\ \text { Fri } \end{gathered}$	Quiz (October $18^{\text {min }}$ - National Chocolate Cupcake Day) (October 19"n - National Sweetness \& Seafood Bisque Day)	 Birthday - Part $\overline{2}$

\Leftrightarrow			
11	$\begin{aligned} & 10 / 21 \\ & \text { Mon } \end{aligned}$	Midterm Project Plan Day (October 21* - National Pumpkin Cheesecake Day)	
12	$\begin{aligned} & 10 / 22 \\ & \text { Tues } \end{aligned}$	3.10 Polynomial Puzzles \& Review (October 22 ${ }^{\text {wid }}$ - National Nut Day)	
13	$\begin{aligned} & 10 / 23 \\ & \text { Wed } \end{aligned}$	UT 3 Polynomial Review HW - On-line Ted Talk - Poly Graphs, UT 4 Review Check List, \& Give Yourself a \$1 Treat (October $23^{r d}$ - National Boston Cream Pie \& iPod Day)	Midterm Golfing Review Game HW - Study \&, On - line Midterm Topics \& Sample Problems
14	$\begin{aligned} & \hline 10 / 24 \\ & \text { Thurs } \end{aligned}$	Unit Test 3 (October 24" - National Bologna Day) HW - Study, On - line Midterm Topics, \& Sample	
15	$\begin{gathered} 10 / 25 \\ \text { Fri } \end{gathered}$	HW - 4.7 Ready \& 4.1 \# 1 - 5 \& Birthday \# 3 = Graded HW \# 5 (October 25" - National Greasy Food \& Breadsticks	HW - On-line Ted Talk - Poly Graphs, Birthday \# 3 = Graded HW \# 5, \& Give Yourself a \$1 Treat
$\stackrel{9}{6}$			

Unit 3 -Honors Math 3 - Standards "Polynomial Functions"

$\left.\begin{array}{|c|l|}\hline \begin{array}{l}\text { NC.M3.A- } \\ \text { SSE.1ab }\end{array} & \begin{array}{l}\text { Interpret expressions that represent a quantity in terms of its } \\ \text { context. } \\ \text { a. Identify and interpret parts of a piecewise, absolute value, } \\ \text { polynomial, exponential and rational expressions including terms, } \\ \text { factors, coefficients, and exponents. } \\ \text { b. Interpret expressions composed of multiple parts by viewing } \\ \text { one or more of their parts as a single entity to give meaning in } \\ \text { terms of a context. }\end{array} \\ \hline \text { NC.M3.A-CED.2 } & \begin{array}{l}\text { Create and graph equations in two variables to represent absolute } \\ \text { value, polynomial, exponential and rational relationships between } \\ \text { quantities. }\end{array} \\ \hline \text { NC.M3.F-IF.4 } & \begin{array}{l}\text { Interpret key features of graphs, tables, and verbal descriptions in } \\ \text { context to describe functions that arise in applications relating two } \\ \text { quantities to include periodicity and discontinuities. }\end{array} \\ \hline \text { NC.M3.F-IF.7 } & \begin{array}{l}\text { Analyze piecewise, absolute value, polynomials, exponential, } \\ \text { rational, and trigonometric functions (sine and cosine) using } \\ \text { different representations to show key features of the graph, by } \\ \text { hand in simple cases and using technology for more complicated } \\ \text { cases, including: domain and range; intercepts; intervals where the } \\ \text { function is increasing, decreasing, positive, or negative; rate of } \\ \text { change; relative maximums and minimums; symmetries; end } \\ \text { behavior; period; and discontinuities. }\end{array} \\ \hline \text { NC.M3.N-CN.9 } & \begin{array}{l}\text { Use the Fundamental Theorem of Algebra to determine the } \\ \text { number and potential types of solutions for polynomial } \\ \text { functions. }\end{array} \\ \hline \text { NC.M3.A-APR.3 } & \begin{array}{l}\text { Understand and apply the Remainder Theorem. }\end{array} \\ \text { N3.A-APR.6 } & \begin{array}{l}\text { Understand the relationship among factors of a polynomial } \\ \text { expression, the solutions of a polynomial equation and the } \\ \text { zeros of a polynomial function. }\end{array} \\ \text { Rewrite simple rational expressions in different forms; } \\ \text { write a(x) /b(x) in the form q(x) + r(x) b(x), where a(x), } \\ \text { b(x), q(x), and r(x) are polynomials with the degree of r(x) } \\ \text { less than the degree of b(x). }\end{array}\right\}$

NC.M3.F-BF.1	Write a function that describes a relationship between two quantities.
NC.M3.F-BF.1a	a. Build polynomial and exponential functions with real solution(s) given a graph, a description of a relationship, or ordered pairs (include reading these from a table).
Extend an understanding of the effects on the graphical and tabular representations of a function when replacing $\mathrm{f}(\mathrm{x})$ with $\mathrm{k} \cdot \mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{x})+\mathrm{k}, \mathrm{f}(\mathrm{x}+\mathrm{k})$ to include $\mathrm{f}(\mathrm{k} \cdot \mathrm{x})$ for specific values of k (both positive and negative)	
NC.M3.F-LE.3	Compare the end behavior of functions using their rates of change over intervals of the same length to show that a quantity increasing exponentially eventually exceeds a quantity increasing as a polynomial function.

Unit 3 -Honors Math 3 - Formative Assessment Chart "Polynomial Functions"

Keep track of your concept progress by checking the appropriate box as we go through the unit

	I Can...	Know a little	Need Practice	I Got it!
1	Identify a cubic function from the rate of change.			
2	Describe the features of $(x)=x 3$.			
3	Graph cubic functions in the form: $f(x)=a(x-h) 3+k$			
4	Describe the similarities and differences between cubic functions and quadratic functions.			
5	Add polynomials both algebraically and graphically.			
6	Subtract polynomials both algebraically and graphically.			
7	Multiply polynomials using the distributive property.			
8	Use Pascal's Triangle to raise a binomial to a power.	Use the Fundamental Theorem of Algebra to determine how many roots a polynomial has.		
10	Write a polynomial in factored form, given the roots of the polynomial.			
11	Find the other roots of a polynomial given a factor or root.			
12	Describe pairs of irrational or imaginary roots of polynomials.			
	Determine the end behavior of a polynomial of a given degree.			

